Showing posts with label native diet. Show all posts
Showing posts with label native diet. Show all posts

Sunday, December 5, 2010

Interview with a Kitavan

Kitava is a Melanesian island that has maintained an almost entirely traditional, non-industrial diet until very recently. It was the subject of a study by Dr. Staffan Lindeberg and colleagues, which I have written about many times, in which they demonstrated that Kitavans have a very low (undetectable) rate of heart attack, stroke, diabetes and overweight. Dr. Lindeberg described their diet as consisting mostly of yam, sweet potato, taro, cassava, coconut, fruit, fish and vegetables. Over the seven days that Dr. Lindeberg measured food intake, they ate 69% of their calories as carbohydrate, 21% as fat (mostly from coconut) and 10% as protein.

I recently received an e-mail from a Kitavan by the name of Job Daniel. He's working at the Papua New Guinea Institute of Medical Research in Madang, studying the social and economic impacts of malaria and related health issues in Papua New Guinea. He recalls many details of Dr. Lindeberg's visit to Kitava, which Dr. Lindeberg has confirmed are correct. Job generously offered to answer some of my questions about the traditional Kitavan diet. My questions are in bold, and his responses are below.

How many meals a day do Kitavans eat?
People on the island eat mostly two meals a day. But nowadays, breakfast is mainly comprised of tubers (yam and sweet potato and greens all cooked in coconut cream and salt) and dinner is the same with the inclusion of fish as protein most often. In between these two meals, lunch is seen as a light refreshment with fruits or young coconut only to mention these two popular ones. In between the morning and the evening, we mostly eat fruits as snack or lunch. Generally speaking, there are only two main meals per day, i.e breakfast and dinner.

Do Kitavans eat any fermented food?

There are fermented fruits and nuts like you've said for breadfruit, nuts, yams and not forgetting fish. We ferment them by using the traditional method of drying them over the fire for months. And this fermented foods last for almost one to two years without getting stale or spoiled. Food preservation is a skill inherited from our great grand fathers taking into consideration the island's location and availability of food. Foods such as bread fruit and fish are fermented and preserved to serve as substitutes to fresh food in times of trouble or shortage. Otherwise, they're eaten along the way.

Is this really fermentation or simply drying?
To your query about the fermentation methods we use, apart from drying food over the fire, we also use this method like the Hawaiians do with taro [poi- SJG]. For our case we bury a special kind of fruit collected from the tree and buried in the ground to ripen, which takes about 2 - 3 days. I don't really know the English name, but we call it 'Natu' in vernecular. There's also a certain nut when it falls from the tree, women collect them and peel off the rotten skin, then mumu [earth oven- SJG] them in the ground covered with leaves to protect them from burning from the extreme heat of the fire, both from the open fire on top and hot stones underneath. After a day, the nuts are removed from the mumu and loaded into very big baskets which are then shifted to the sea for fermentation. This takes a week (minimum) to ferment or be ready for consumption at last. After the fermentation period is over, i.e one week some days or two
weeks to be exact, then the nuts are finally ready for eating. The length of time it takes before the nuts are no longer edible is roughly one week.

What parts of the fish are eaten?
As islanders, we eat almost every creature and body part of a sea creature. Especially fish eggs, it is one of the favorites of children. They always prefer it burnt on the fire and consumed greedily. Every part of the fish is eaten except for the feces, gall bladder, bones and the scales.

Is food shortage really rare on Kitava?
Generally speaking it is rare. BUT sometimes we run out of food only if there is a drought and the sea is useless. Otherwise, we tend to use the preserved or fermented foods on the dryer in the kitchen. As you would understand, we have seasons and they affect the type and availability of food on the island. In the beginning of the year, we eat sweet potato, cassava and mostly tuna for protein. During mid year, before yam comes in to replace sweet potato and cassava, taro is then ready for harvest. And then yams are ready for harvesting so the food supply is continued on. OK when yams are harvested, some are eaten, some are stored away for reserve and seedlings. In this way, we don't run out food towards the end of the year before sweet potato would be ready for harvest. So as you can see, the food supply on the island is somewhat planned by our ancestral economists where it continues throughout the year without stopping.

Do Kitavans traditionally eat pork, and if so, how often?
We do eat pork but not that often because pork meat is chiefly regarded important on the island. We only eat pork on special occasions so I'd rather say that pork is only eaten occasionally. In most cases in the middle of the year when the yams are harvested (yam harvest celebrations and towards the end of the year for certain rites and activities). Otherwise the everyday meal is always topped with fish.

How long are infants breast fed on Kitava?
Women breast feed for a minimum of 2 years. But breast feeding is again determined by the size and health situation of the baby. If the baby is looking healthy and big, it is most likely that this baby would be adopted temporarily by someone else so as to be removed from breast milk after two years of age minimum. Child care nowadays is paramount as people start to realize the importance of health and hygiene in general. But Kitavans are well known in that part of the country for their hygiene practices. They also got the provincial and district awards for a 'clean community' in early 90s and right now, they still maintain their hygiene level and awareness.

Are there any other foods that are commonly eaten on Kitava that I might not be aware of?
Bananas, pineapple, corn and watermelons. For watermelon and corn, they are plentiful especially at this time of the year.

Thanks for your help, Job! I know many people will appreciate reading these responses.

Saturday, November 20, 2010

Glucose Tolerance in Non-industrial Cultures

Background

Glucose is the predominant blood sugar and one of the body's two main fuel sources (the other is fatty acids). Glucose, in one form or another, is also the main form of digestible dietary carbohydrate in nearly all human diets. Starch is made of long chains of glucose molecules, which are rapidly liberated and absorbed during digestion. Sucrose, or table sugar, is made of one glucose and one fructose molecule, which are separated before absorption.

Blood glucose is essential for life, but it can also be damaging if there is too much of it. Therefore, the body tries to keep it within a relatively tight range. Normal fasting glucose is roughly between 70 and 90 mg/dL*, but in the same individual it's usually within about 5 mg/dL on any given day. Sustained glucose above 160 mg/dL or so causes damage to multiple organ systems. Some people would put that number closer to 140 mg/dL.

The amount of glucose contained in a potato far exceeds the amount contained in the blood, so if all that glucose were to enter the blood at once, it would lead to a highly damaging blood glucose level. Fortunately, the body has a hormone designed to keep this from happening: insulin. Insulin tells cells to internalize glucose from the blood. It's released by the pancreas in response to eating carbohydrate, and protein to a lesser extent. The amount of insulin released is proportional to the amount of carbohydrate ingested, so that glucose entering the blood is cleared before it can accumulate.

Insulin doesn't clear all the glucose as it enters the bloodstream, however. Some of it does accumulate, leading to a spike in blood glucose. This usually doesn't exceed 160 mg/dL in a healthy person, and even if it approaches that level it's only briefly. However, diabetics have reduced insulin signaling, and eating a typical meal can cause their glucose to exceed 300 mg/dL due to reduced clearance. In affluent nations, this is typically due to type II diabetes, which begins as insulin resistance, a condition in which insulin is actually higher than normal but cells fail to respond to it.

The precursor to diabetes is called glucose intolerance, or pre-diabetes. In someone with glucose intolerance, blood glucose after a typical meal will exceed that of a healthy person, but will not reach the diabetic range (a common definition of diabetes is 200 mg/dL or higher, 2 hours after ingesting 75g of glucose). Glucose tolerance refers to a person's ability to control blood glucose when challenged with dietary glucose, and can be used in some contexts as a useful predictor of diabetes risk and general metabolic health. Doctors use the oral glucose tolerance test (OGTT), which involves drinking 60-100g glucose and measuring blood glucose after one or two hours, to determine glucose tolerance.

Why do we care about glucose tolerance in non-industrial cultures?

One of the problems with modern medical research is that so many people in our culture are metabolically sick that it can be difficult to know if what we consider "normal" is really normal or healthy in the broader sense. Non-industrial cultures allow us to examine what the human metabolism is like in the absence of metabolic disease. I admit this rests on certain assumptions, particularly that these people aren't sick themselves. I don't think all non-industrial cultures are necessarily healthy, but I'm going to stick with those that research has shown have an exceptionally low prevalence of diabetes (by Western standards) and other "diseases of civilization" for the purposes of this post.

Here's the question I really want to answer in this post: do healthy non-industrial cultures with a very high carbohydrate intake have an excellent glucose tolerance, such that their blood glucose doesn't rise to a high level, or are they simply resistant to the damaging effects of high blood glucose?

The data

I'm going to start with an extreme example. In the 1960s, when it was fashionable to study non-industrial cultures, researchers investigated the diet and health of a culture in Tukisenta, in the highlands of Papua New Guinea. The eat practically nothing but sweet potatoes, and their typical daily fare is 94.6 percent carbohydrate. Whether or not you believe that exact number, their diet was clearly extraordinarily high in carbohydrate. They administered 100g OGTTs and measured blood glucose at one hour, which is a very stringent OGTT. They compared the results to those obtained in the 1965 Tecumseh study (US) obtained by the same method. Here's what they found (1):
Compared to Americans, in Tukisenta they had an extraordinary glucose tolerance at all ages. At one hour, their blood glucose was scarcely above normal fasting values, and glucose tolerance only decreased modestly with age. In contrast, in Americans over 50 years old, the average one-hour value was approaching the diabetic range!

Now let's take a look at the African Bantu in the Lobaye region of the Central African Republic. The Bantu are a large ethnic group who primarily subsist on a diverse array of starchy foods including grains, beans, plantains and root crops. One hour after a 100g OGTT, their blood glucose was 113 mg/dL, compared to 139 mg/dL in American controls (2). Those numbers are comparable to what investigators found in Tukisenta, and indicate an excellent glucose tolerance in the Bantu.

In South America, different investigators studied a group of native Americans in central Brazil that subsist primarily on cassava (a starchy root crop) and freshwater fish. Average blood glucose one hour after a 100g OGTT was 94 mg/dl, and only 2 out of 106 people tested had a reading over 160 mg/dL (both were older women) (Western Diseases: Their Emergence and Prevention, p. 149). Again, that indicates a phenomenal glucose tolerance by Western standards.

I have to conclude that high-carbohydrate non-industrial cultures probably don't experience damaging high blood glucose levels, because their glucose tolerance is up to the task of shuttling a huge amount of glucose out of the bloodstream before that happens.

Not so fast...

Now let's turn our attention to another study that may throw a wrench in the gears. A while back, I found a paper containing OGTT data for the !Kung San (also called the Bushmen), a hunter-gatherer group living in the Kalahari desert of Africa. I reported in an earlier post that they had a good glucose tolerance. When I revisited the paper recently, I realized I had misread it and in fact, their glucose tolerance was actually pretty poor (come on guys, you have to call me on this stuff!).

Investigators administered a 50g OGTT, half what the other studies used. At one hour, the San had blood glucose readings of 169 mg/dL, compared to 142 mg/dL in Caucasian controls (3)! I suspect a 100g OGTT would have put them close to the diabetic range.

Wait a minute, these guys are hunter-gatherers living the ancestral lifestyle; aren't they supposed to be super healthy?? While I was mulling this over, I recalled a discussion on Peter's blog hyperlipid where commenters were discussing their diabetic OGTT values while on a low-carbohydrate diet. Apparently, carbohydrate refeeding for a few days generally reverses this and allows a normal OGTT in most people. It turns out this effect has been known for the better part of a century.

So what were the San eating? The study was conducted in October of 1970. The San diet changes seasonally, however their main staple food is the mongongo nut, which is mostly fat and which is available year-round (according to The !Kung San: Men, Women and Work in a Foraging Society). Their carbohydrate intake is generally low by Western standards, and at times of the year it is very low. This varies by the availability of other foods, but they generally don't seem to relish the fibrous starchy root crops that are available in the area, as they mostly eat them when other food is scarce. Jean-Louis Tu has posted a nice analysis of the San diet on BeyondVeg (4). Here's a photo of a San man collecting mongongo nuts from The !Kung San: Men, Women and Work in a Foraging Society:

What did the authors of the OGTT study have to say about their diet? Acknowledging that prior carbohydrate intake may have played a role in the OGTT results of the San, they made the following remark:
a retrospective dietary history (M. J. Konner, personal communication, 1971) indicated that the [San], in fact, consumed fairly large amounts of carbohydrate-rich vegetable food during the week before testing.
However, the dietary history was not provided, nor has it been published, so we have no way to assess the statement's accuracy or what was meant by "fairly large amounts of carbohydrate-rich vegetable food." Given the fact that the San diet generally ranges from moderately low to very low in carbohydrate, I suspect they were not getting much carbohydrate as a percentage of calories. Looking at the nutritional value of the starchy root foods they typically ate in appendix D of The !Kung San: Men, Women and Work in a Foraging Society, they are fibrous and most contain a low concentration of starch compared to a potato for example. The investigators may have been misled by the volume of these foods eaten, not realizing that they are not as rich in carbohydrate as the starchy root crops they are more familiar with.

You can draw your own conclusions, but I think the high OGTT result of the San probably reflect a low habitual carbohydrate intake, and not pre-diabetes. I have a very hard time believing that this culture wasn't able to handle the moderate amount of carbohydrate in their diet effectively, as observers have never described diabetic complications among them.

Putting it all together

This brings me to my hypothesis. I think a healthy human body is extraordinarily flexible in its ability to adapt to a very broad range of carbohydrate intakes, and adjusts glucose tolerance accordingly to maintain carbohydrate handling in a healthy range. In the context of a healthy diet and lifestyle (from birth), I suspect that nearly anyone can adjust to a very high carbohydrate intake without getting dangerous blood glucose spikes. A low carbohydrate intake leads to lower glucose handling and better fat handling, as one would expect. This can show up as impaired glucose tolerance or diabetes on an OGTT, but that does not necessarily reflect a pathological state in my opinion.

Every person is different based on lifestyle, diet, personal history and genetics. Not everyone in affluent nations has a good glucose tolerance, and some people will never be able to handle starch effectively under any circumstances. The best way to know how your body reacts to carbohydrate is to test your own post-meal blood glucose using a glucose meter. They are inexpensive and work well. For the most informative result, eat a relatively consistent amount of carbohydrate for a week to allow your body to adapt, then take a glucose measurement 1 and 2 hours after a meal. If you don't eat much carbohydrate, eating a potato might make you think you're diabetic, whereas after a week of adaptation you may find that a large potato does not spike your blood glucose beyond the healthy range.

Exercise is a powerful tool for combating glucose intolerance, as it increases the muscles' demand for glucose, causing them to transport it out of the blood greedily after a meal. Any exercise that depletes muscle glycogen should be effective.


* Assuming a typical carbohydrate intake. Chris Kresser recently argued, based on several studies, that true normal fasting glucose for a person eating a typical amount of carbohydrate is below 83 mg/dL. Low-carbohydrate eating may raise this number, but that doesn't necessarily indicate a pathological change. High-carbohydrate cultures such as the Kitavans, Aymara and New Guineans tend to have fasting values in the low 60s to low 70s. I suspect that a very high carbohydrate intake generally lowers fasting glucose in healthy people. That seems to be the case so far for Chris Voigt, on his diet of 20 potatoes a day. Stay tuned for an interview with Mr. Voigt in early December.

Tuesday, November 16, 2010

Impressions from the Wise Traditions Conference

I spent last weekend at the Weston A. Price Foundation Wise Traditions conference in King of Prussia, PA. Here are some highlights:

Spending time with several people in the diet-health community who I’ve been wanting to meet in person, including Chris Masterjohn, Melissa McEwen and John Durant. John and Melissa are the public face of the New York city paleo movement. The four of us spent most of the weekend together tossing around ideas and making merry. I’ve been corresponding with Chris quite a bit lately and we’ve been thinking through some important diet-health questions together. He is brimming with good ideas. I also got to meet Sally Fallon Morell, the founder and president of the WAPF.

Attending talks. The highlight was Chris Masterjohn’s talk “Heart Disease and Molecular Degeneration: the New Paradigm”, in which he described his compelling theory on oxidative damage and cardiovascular disease, among other things. You can read some of his earlier ideas on the subject here. Another talk I really enjoyed was by Anore Jones, who lived with an isolated Inuit group in Alaska for 23 years and ate a mostly traditional hunter-gatherer diet. The food and preparation techniques they used were really interesting, including various techniques for extracting fats and preserving meats, berries and greens by fermentation. Jones has published books on the subject that I suspect would be very interesting, including Nauriat Niginaqtuat, Plants that We Eat, and Iqaluich Niginaqtuat, Fish that We Eat. The latter is freely available on the web here.

I attended a speech by Joel Salatin, the prolific Virginia farmer, writer and agricultural innovator, which was fun. I enjoyed Sally Fallon Morell’s talk on US school lunches and the politics surrounding them. I also attended a talk on food politics by Judith McGeary, a farmer, attorney and and activist, in which she described the reasons to oppose or modify senate bill 510. The gist is that it will be disproportionately hard on small farmers who are already disfavored by current regulations, making high quality food more difficult to obtain, more expensive or even illegal. It’s designed to improve food safety by targeting sources of food-borne pathogens, but how much are we going to have to cripple national food quality and farmer livelihood to achieve this, and will it even be effective? I don’t remember which speaker said this quote, and I’m paraphrasing, but it stuck with me: “I just want to be able to eat the same food my grandmother ate.” In 2010, that’s already difficult to achieve. Will it be impossible in 2030?

Giving my own talk. I thought it went well, although attendance was not as high as I had hoped. The talk was titled “Kakana Dina: Diet and Health in the Pacific Islands”, and in it I examined the relationship between diet and health in Pacific island cultures with different diets and at various stages of modernization. I’ve covered some of this material on my blog, in my posts on Kitava, Tokelau and sweet potato eating cultures in New Guinea, but other material was new and I went into greater detail on food habits and preparation methods. I also dug up a number of historical photos dating back as far as the 1870s.

The food. All the meat was pasture-raised, organic and locally sourced if possible. There was raw pasture-raised cheese, milk and butter. There was wild-caught fish. There were many fermented foods, including sauerkraut, kombucha and sourdough bread. I was really impressed that they were able to put this together for an entire conference.

The vendors. There was an assortment of wholesome and traditional foods, particularly fermented foods, quality dairy and pastured meats. There was an entire farmer’s market on-site on Saturday, with a number of Mennonite vendors selling traditional foods. I bought a bottle of beet kvass, a traditional Russian drink used for flavor and medicine, which was much better than the beet kvass I’ve made myself in the past. Beets are a remarkable food, in part due to their high nitrate content—beet juice has been shown to reduce high blood pressure substantially, possibly by increasing the important signaling molecule nitric oxide. I got to meet Sandeep Agarwal and his family, owners of the company Pure Indian Foods, which domestically produces top-quality pasture-fed ghee (Indian-style clarified butter). They now make tasty spiced ghee in addition to the plain flavor. Sandeep and family donated ghee for the big dinner on Saturday, which was used to cook delicious wild-caught salmon steaks donated by Vital Choice.

There were some elements of the conference that were not to my taste. But overall I’m glad I was able to go, meet some interesting people, give my talk and learn a thing or two.

Saturday, October 2, 2010

Potatoes and Human Health, Part III

Potato-eating Cultures: the Quechua

The potato is thought to have originated in what is now Peru, on the shores of lake Titicaca. Native Peruvians such as the Quechua have been highly dependent on the potato for thousands of years. A 1964 study of the Quechua inhabitants of Nuñoa showed that they obtained 74% of their calories from potatoes (fresh and chuños), 10% from grains, 10% from Chenopodia (quinoa and cañihua), and 4% from animal foods. Total energy intake was 3,170 calories per day (1).

In 2001, a medical study of rural Quechua men reported an average body fat percentage of 16.4% (2). The mean age of the volunteers was 38. Body fat did increase slowly with age in this population, and by age 65 it was predicted to be about 20% on average. That's below the threshold of overweight, so I conclude that most men in this population are fairly lean, although there were a few overweight individuals.

In 2004, a study in rural Quechua women reported a body fat percentage of 31.2% in volunteers with a mean age of 35 (3). Body fat percentage was higher in a group of Quechua immigrants to the Peruvian capital of Lima. Among rural women, average fasting insulin was 6.8 uIU/mL, and fasting glucose was 68.4 mg/dL, which together suggest fairly good insulin sensitivity and glucose control (4). Insulin and glucose were considerably lower in the rural group than the urban group. Blood pressure was low in both groups. Overall, this suggests that Quechua women are not overweight and are in reasonably good metabolic health.

Rural Quechua are characteristically short, with the average man standing no more than 5' 2" (2). One might be tempted to speculate that this reflects stunting due to a deficient diet. However, given the fact that nearly all non-industrial populations, including contemporary hunter-gatherers, are short by modern standards, I'm not convinced the Quechua are abnormal. A more likely explanation is that industrial foods cause excessive tissue growth in modern populations, perhaps by promoting overeating and excessive insulin and IGF-1 production, which are growth factors. I first encountered this hypothesis in Dr. Staffan Lindeberg's book Food and Western Disease.

I don't consider the Quechua diet to be optimal, but it does seem to support a reasonable level of metabolic health. It shows that a lifetime high-carbohydrate, high glycemic index, high glycemic load diet doesn't lead to insulin resistance and obesity in the context of a traditional diet and lifestyle. Unfortunately, I don't have more detailed data on other aspects of their health, such as digestion.

Potato-eating Cultures: the Aymara

The Aymara are another
potato-dependent people of the Andes, who span Peru, Bolivia and Chile. The first paper I'll discuss is titled "Low Prevalence of Type II Diabetes Despite a High Body Mass Index in the Aymara Natives From Chile", by Dr. Jose Luis Santos and colleagues (5). In the paper, they show that the prevalence of diabetes in this population was 1.5%, and the prevalence of pre-diabetes was 3.6%. The prevalence of both remained low even in the elderly. Here's a comparison of those numbers with figures from the modern United States (6):

That's quite a difference! The prevalence of diabetes in this population is low, but not as low as in some cultures such as the Kitavans (7, 8).

Now to discuss the "high body mass index" referenced in the title of the paper. The body mass index (BMI) is the relation between height and weight, and typically reflects fatness. The average BMI of this population was 24.9, which is very close to the cutoff between normal and overweight (25).

Investigators were surprised to find such a low prevalence of diabetes in this population, despite their apparent high prevalence of overweight. Yet if you've seen pictures of rural native South Americans, you may have noticed they're built short and thick, with wide hips and big barrel chests. Could this be confounding the relationship between BMI and body fatness? To answer that question, I found another paper that estimated body fat using skinfold measurements (9). That study found a body fat percentage of 15.4%, which is lean by any standard. Based on this paper and others, it appears that investigators shouldn't extrapolate BMI standards from modern Caucasian populations to traditional native American groups.

Back to the first paper. In this Aymara group, blood pressure was on the high side. Serum cholesterol was also a bit high for a traditionally-living population, but still lower than most modern groups (~188 mg/dL). I find it very interesting that the cholesterol level in this population that eats virtually no fat was the same as on Tokelau, where nearly half of calories come from highly saturated coconut fat (10, 11). Fasting insulin is also on the high side in the Aymara, which is also interesting given their good glucose tolerance and low prevalence of diabetes.

Potato-eating Cultures: the Irish


Potatoes were introduced to Ireland in the 17th century. They were well suited to the cool, temperate climate, and more productive than any other local crop. By the early 18th century, potatoes were the main source of calories, particularly for the poor who ate practically nothing else. In 1839, the average Irish laborer obtained 87% of his calories from potatoes (12). In 1845, the potato blight Phytophthora infestans struck, decimating potato plantations nationwide and creating the Great Famine.

There isn't much reliable information on the health status of the Irish prior to the famine, besides reports of vitamin A deficiency symptoms (13). However, they had a very high fertility rate, and anecdotal reports described them as healthy and attractive (14):
As far as fecundity is concerned, the high nutritional value of the potato diet might have played a significant role, but little supportive evidence has been presented so far... What is known is that the Irish in general and Irish women in particular were widely described as healthy and good-looking. Adam Smith's famous remark that potatoes were "peculiarly suitable to the health of the human constitution" can be complemented with numerous observations from other contemporary observers to the same effect.
Controlled Feeding Studies

Starting nearly a century ago, a few eccentrics decided to feed volunteers a potato-only diet to see if it could be done. The first such experiment was carried out by a Dr. M. Hindhede and published in 1913 (described in 15). Hindhede's goal was to explore the lower limit of the human protein requirement and the biological quality of potato protein. He fed three healthy adult men almost nothing but potatoes and margarine for 309 days (margarine was not made from hydrogenated seed oils at the time), all while making them do progressively more demanding physical labor. They apparently remained in good physical condition. Here's a description of one of his volunteers, a Mr. Madsen, from another book (described in 16; thanks to Matt Metzgar):
In order to test whether it was possible to perform heavy work on a strict potato diet, Mr. Madsen took a place as a farm laborer... His physical condition was excellent. In his book, Dr. Hindhede shows a photograph of Mr. Madsen taken on December 21st, 1912, after he had lived for almost a year entirely on potatoes. This photograph shows a strong, solid, athletic-looking figure, all of whose muscles are well-developed, and without excess fat. ...Hindhede had him examined by five physicians, including a diagnostician, a specialist in gastric and intestinal diseases, an X-ray specialist, and a blood specialist. They all pronounced him to be in a state of perfect health.
Dr. Hindhede discovered that potato protein is high quality, providing all essential amino acids and high digestibility. Potato protein alone is sufficient to sustain an athletic man (although that doesn't make it optimal). A subsequent potato feeding study published in 1927 confirmed this finding (17). Two volunteers, a man and a woman, ate almost nothing but potatoes, lard and butter for 5.5 months. The man was an athlete but the woman was sedentary. Body weight and nitrogen balance (reflecting protein gain/loss from the body) remained constant throughout the experiment, indicating that their muscles were not atrophying at any appreciable rate, and they were probably not putting on fat. The investigators remarked:
The digestion was excellent throughout the experiment and both subjects felt very well. They did not tire of the uniform potato diet and there was no craving for change.
In one of his Paleo Diet newsletters titled "Consumption of Nightshade Plants (Part 1)", Dr. Loren Cordain referenced two feeding studies showing that potatoes increase the serum level of the inflammatory cytokine interleukin-6 (22, 23). However, one study was not designed to determine the specific role of potato in the change (two dietary factors were altered simultaneously), and the other used potato chips as the source of potato. So you'll have to pardon my skepticism that the findings are relevant to the question at hand.

Just yesterday, Mr. Chris Voigt of the Washington State Potato Commission embarked on his own n=1 potato feeding experiment as a way to promote Washington state potatoes. He'll be eating nothing but potatoes and fat for two months, and getting a full physical at the end. Check out his website for more information and updates (18). Mr. Voigt has graciously agreed to a written interview with Whole Health Source at the end of his experiment. He pointed out to me that the Russet Burbank potato, the most popular variety in the United States, is over 135 years old. Stay tuned for more interesting facts from Mr. Voigt in early December.

Observational Studies

With the recent interest in the health effects of the glycemic index, a few studies have examined the association between potatoes and health in various populations. The results are all over the place, with some showing positive associations with health, and others showing negative associations (19, 20, 21). As a whole, I find these studies difficult to interpret and not very helpful.

Anecdotes

Some people feel good when they eat potatoes. Others find that potatoes and other members of the nightshade family give them digestive problems, exacerbate their arthritis, or cause fat gain. I haven't seen any solid data to substantiate claims that nightshades aggravate arthritis or other inflammatory conditions. However, that doesn't mean there aren't individuals who are sensitive. If potatoes don't agree with you, by all means avoid them.

The Bottom Line

You made it to the end! Give yourself a pat on the back. You deserve it.

In my opinion, the scientific literature as a whole, including animal and human studies, suggests rather consistently that potatoes can be a healthy part of a varied diet for most people. Nevertheless, I wouldn't recommend eating nothing but potatoes for any length of time. If you do choose to eat potatoes, follow these simple guidelines:
  • Don't eat potatoes that are green, sprouting, blemished or damaged
  • Store them in a cool, dark place. They don't need to be refrigerated but it will extend their life
  • Peel them before eating
Enjoy your potatoes!

Saturday, September 25, 2010

Potatoes and Human Health, Part II

Glycoalkaloids in Commonly Eaten Potatoes

Like many edible plants, potatoes contain substances designed to protect them from marauding creatures. The main two substances we're concerned with are alpha-solanine and alpha-chaconine, because they are the most toxic and abundant. Here is a graph of the combined concentration of these two glycoalkaloids in common potato varieties (1):

We can immediately determine three things from this graph:
  • Different varieties contain different amounts of glycoalkaloids.
  • Common commercial varieties such as russet and white potatoes are low in glycoalkaloids. This is no accident. The glycoalkaloid content of potatoes is monitored in the US.
  • Most of the glycoalkaloid content is in the skin (within 1 mm of the surface). That way, predators have to eat through poison to get to the flesh. Fortunately, humans have peelers.
I'll jump the gun and tell you that the generally accepted safe level of potato glycoalkaloids is 200 mcg/g fresh weight (1). You can see that all but one variety are well below this level when peeled. Personally, I've never seen the Snowden variety in the store or at the farmer's market. It appears to be used mostly for potato chips.

Glycoalkaloid Toxicity in Animals

Potato glycoalkaloids are undoubtedly toxic at high doses. They have caused many harmful effects in animals and humans, including (1, 2):
  • Death (humans and animals)
  • Weight loss, diarrhea (humans and animals)
  • Anemia (rabbits)
  • Liver damage (rats)
  • Lower birth weight (mice)
  • Birth defects (in animals injected with glycoalkaloids)
  • Increased intestinal permeability (mice)
However, it's important to remember the old saying "the dose makes the poison". The human body is designed to handle a certain amount of plant toxins with no ill effects. Virtually every plant food, and a few animal foods, contains some kind of toxic substance. We're constantly bombarded by gamma rays, ultra violet rays, bacterial toxins, free radicals, and many other potentially harmful substances. In excess, they can be deadly, but we are adapted to dealing with small amounts of them, and the right dose can even be beneficial in some cases.

All of the studies I mentioned above, except one, involved doses of glycoalkaloids that exceed what one could get from eating typical potatoes. They used green or blemished potatoes, isolated potato skins, potato sprouts or isolated glycoalkaloids (more on this later). The single exception is the last study, showing that normal doses of glycoalkaloids can aggravate inflammatory bowel disease in transgenic mice that are genetically predisposed to it (3)*.

What happens when you feed normal animals normal potatoes? Not much. Many studies have shown that they suffer no ill effects whatsoever, even at high intakes (1, 2). This has been shown in primates as well (4, 5, 6). In fact, potato-based diets appear to be generally superior to grain-based diets in animal feed. As early as 1938, Dr. Edward Mellanby showed that grains, but not potatoes, aggravate vitamin A deficiency in rats and dogs (7). This followed his research showing that whole grains, but not potatoes, aggravate vitamin D deficiency due to their high phytic acid content (Mellanby. Nutrition and Disease. 1934). Potatoes were also a prominent part of Mellanby's highly effective tooth decay reversal studies in humans, published in the British Medical Journal in 1932 (8, 9).

Potatoes partially protect rats against the harmful effects of excessive cholesterol feeding, when compared to wheat starch-based feed (10). Potato feeding leads to a better lipid profile and intestinal short-chain fatty acid production than wheat starch or sugar in rats (11). I wasn't able to find a single study showing any adverse effect of normal potato feeding in any normal animal. That's despite reading two long review articles on potato glycoalkaloids and specifically searching PubMed for studies showing a harmful effect. If you know of one, please post it in the comments section.

In the next post, I'll write about the effects of potatoes in the human diet, including data on the health of traditional potato-eating cultures... and a curious experiment by the Washington State Potato Commission that will begin on October 1.


*Interleukin-10 knockout mice. IL-10 is a cytokine involved in the resolution of inflammation and these mice develop inflammatory bowel disease (regardless of diet) due to a reduced capacity to resolve inflammation.

Sunday, September 19, 2010

Potatoes and Human Health, Part I

Potatoes: an Introduction

Over 10,000 years ago, on the shores of lake Titicaca in what is now Peru, a culture began to cultivate a species of wild potato, Solanum tuberosum. They gradually transformed it into a plant that efficiently produces roundish starchy tubers, in a variety of strains that suited the climactic and gastronomic needs of various populations. These early farmers could not have understood at the time that the plant they were selecting would become the most productive crop in the world*, and eventually feed billions of people around the globe.

Wild potatoes, which were likely consumed by hunter-gatherers before domestication, are higher in toxic glycoalkaloids. These are defensive compounds that protect against insects, infections and... hungry animals. Early farmers selected varieties that are low in bitter glycoalkaloids, which are the ancestors of most modern potatoes, however they didn't abandon the high-glycoalkaloid varieties. These were hardier and more tolerant of high altitudes, cold temperatures and pests. Cultures living high in the Andes developed a method to take advantage of these hardy but toxic potatoes, as well as their own harsh climate: they invented chuños. These are made by leaving potatoes out in the open, where they are frozen at night, stomped underfoot and dried in the sun for many days**. What results is a dried potato with a low glycoalkaloid content that can be stored for a year or more.

Nutritional Qualities

From a nutritional standpoint, potatoes are a mixed bag. On one hand, if I had to pick a single food to eat exclusively for a while, potatoes would be high on the list. One reason is that they contain an adequate amount of complete protein, meaning they don't have to be mixed with another protein source as with grains and legumes. Another reason is that a number of cultures throughout history have successfully relied on the potato as their principal source of calories, and several continue to do so. A third reason is that they're eaten in an unrefined, fresh state.

Potatoes contain an adequate amount of many essential minerals, and due to their low phytic acid content (1), the minerals they contain are well absorbed. They're rich in magnesium and copper, two minerals that are important for insulin sensitivity and cardiovascular health (2, 3). They're also high in potassium and vitamin C. Overall, they have a micronutrient content that compares favorably with other starchy root vegetables such as taro and cassava (4, 5, 6). Due to their very low fat content, potatoes contain virtually no omega-6, and thus do not contribute to an excess of these essential fatty acids.

On the other hand, I don't have to eat potatoes exclusively, so what do they have to offer a mixed diet? They have a high glycemic index, which means they raise blood sugar more than an equivalent serving of most carbohydrate foods, although I'm not convinced that's a problem in people with good blood sugar control (7, 8). They're low-ish in fiber, which could hypothetically lead to a reduction in the number and diversity of gut bacteria in the absence of other fiber sources. Sweet potatoes, an unrelated species, contain more micronutrients and fiber, and have been a central food source for healthy cultures (9). However, the main reasons temperate-climate cultures throughout the world eat potatoes is they yield well, they're easily digested, they fill you up and they taste good.

In the next post, I'll delve into the biology and toxicology of potato glycoalkaloids, and review some animal data. In further posts, I'll address the most important question of all: what happens when a person eats mostly potatoes... for months, years, and generations?


* In terms of calories produced per acre.

** A simplified description. The process can actually be rather involved, with several different drying, stomping and leaching steps.

Wednesday, August 18, 2010

Tropical Plant Fats: Coconut Oil, Part I

Traditional Uses for Coconut

Coconut palms are used for a variety of purposes throughout the tropics. Here are a few quotes from the book Polynesia in Early Historic Times:
Most palms begin to produce nuts about five years after germination and continue to yield them for forty to sixty years at a continuous (i.e., nonseasonal) rate, producing about fifty nuts a year. The immature nut contains a tangy liquid that in time transforms into a layer of hard, white flesh on the inner surface of the shell and, somewhat later, a spongy mass of embryo in the nut's cavity. The liquid of the immature nut was often drunk, and the spongy embryo of the mature nut often eaten, raw or cooked, but most nuts used for food were harvested after the meat had been deposited and before the embryo had begun to form...

After the nut had been split, the most common method of extracting its hardened flesh was by scraping it out of the shell with a saw-toothed tool of wood, shell, or stone, usually lashed to a three-footed stand. The shredded meat was then eaten either raw or mixed with some starchy food and then cooked, or had its oily cream extracted, by some form of squeezing, for cooking with other foods or for cosmetic or medical uses...

Those Polynesians fortunate enough to have coconut palms utilized their components not only for drink and food-- in some places the most important, indeed life-supporting food-- but also for building-frames, thatch, screens, caulking material, containers, matting, cordage, weapons, armor, cosmetics, medicine, etc.
Mainstream Ire

Coconut fat is roughly 90 percent saturated, making it one of the most highly saturated fats on the planet. For this reason, it has been the subject of grave pronouncements by health authorities over the course of the last half century, resulting in its near elimination from the industrial food system. If the hypothesis that saturated fat causes heart disease and other health problems is correct, eating coconut oil regularly should tuck us in for a very long nap.

Coconut Eaters

As the Polynesians spread throughout the Eastern Pacific islands, they encountered shallow coral atolls that were not able to sustain their traditional starchy staples, taro, yams and breadfruit. Due to its extreme tolerance for poor, salty soils, the coconut palm was nearly the only food crop that would grow on these islands*. Therefore, their inhabitants lived almost exclusively on coconut and seafood for hundreds of years.

One group of islands that falls into this category is Tokelau, which fortunately for us was the subject of a major epidemiological study that spanned the years 1968 to 1982: the Tokelau Island Migrant Study (1). By this time, Tokelauans had managed to grow some starchy foods such as taro and breadfruit (introduced in the 20th century by Europeans), as well as obtaining some white flour and sugar, but their calories still came predominantly from coconut.

Over the time period in question, Tokelauans obtained roughly half their calories from coconut, placing them among the most extreme consumers of saturated fat in the world. Not only was their blood cholesterol lower than the average Westerner, but their hypertension rate was low, and physicians found no trace of previous heart attacks by ECG (age-adjusted rates: 0.0% in Tokelau vs 3.5% in Tecumseh USA). Migrating to New Zealand and cutting saturated fat intake in half was associated with a rise in ECG signs of heart attack (1.0% age-adjusted) (2, 3).

Diabetes was low in men and average in women by modern Western standards, but increased significantly upon migration to New Zealand and reduction of coconut intake (4). Non-migrant Tokelauans gained body fat at a slower rate than migrants, despite higher physical activity in the latter (5). Together, this evidence seriously challenges the idea that coconut is unhealthy.

The Kitavans also eat an amount of coconut fat that would make Dr. Ancel Keys blush. Dr. Staffan Lindeberg found that they got 21% of their 2,200 calories per day from fat, nearly all of which came from coconut. They were getting 17% of their calories from saturated fat; 55% more than the average American. Dr. Lindeberg's detailed series of studies found no trace of coronary heart disease or stroke, nor any obesity, diabetes or senile dementia even in the very old (6, 7).

Of course, the Tokelauans, Kitavans and other traditional cultures were not eating coconut in the form of refined, hydrogenated coconut oil cake icing. That distinction will be important when I discuss what the biomedical literature has to say in the next post.


* Most also had pandanus palms, which are also tolerant of poor soils and whose fruit provided a small amount of starch and sugar.

Tuesday, June 22, 2010

In Search of Traditional Asian Diets

It's been difficult for me to find good information on Asian diets prior to modernization. Traditional Chinese, Taiwanese and Japanese diets are sometimes portrayed as consisting mostly of white rice, with vegetables and a bit of meat and soy, but I find that implausible. Rice doesn't grow everywhere, in part because it requires a tremendous amount of water. Removing all the bran was prohibitively labor-intensive before the introduction of modern machine milling. One hundred years ago, bran was partially removed by beating or grinding in a mortar and pestle, as it still is in parts of rural Asia today. Only the wealthy could afford true white rice.

Given the difficulty of growing rice in most places, and hand milling it, the modern widespread consumption of white rice in Asia must be a 20th century phenomenon, originating in the last 20-100 years depending on location. Therefore, white rice consumption does not predate the emergence of the "diseases of civilization" in Asia.

In the book Western Diseases: Their Emergence and Prevention, there are several accounts of traditional Asian diets I find interesting.

Taiwan in 1980

The staple constituent of the diet is polished white rice. Formerly in the poorer areas along the sea coast the staple diet was sweet potato, with small amounts of white rice added. Formerly in the mountains sweet potato, millet and taro were the staple foods. During the last 15 years, with the general economic development of the whole island, white polished rice has largely replaced other foods. There is almost universal disinclination to eat brown (unpolished) rice, because white rice is more palatable, it bears kudos, cooking is easier and quicker, and it can be stored for a much longer period.

Traditionally, coronary heart disease and high blood pressure were rare, but the prevalence is now increasing rapidly. Stroke is common. Diabetes was rare but is increasing gradually.

Mainland China

China is a diverse country, and the food culture varies by region.

Snapper (1965)… quoted an analysis by Guy and Yeh of Peiping (Peking) diets in 1938. There was a whole cereal/legume/vegetable diet for poorer people and a milled-cereal/meat/vegetable diet for the richer people.

Symptoms of vitamin A, C and D deficiency were common in the poor, although coronary heart disease and high blood pressure were rare. Diabetes occurred at a higher rate than in most traditionally-living populations.

Japan

On the Japanese island of Okinawa, the traditional staple is the sweet potato, with a smaller amount of rice eaten as well. Seafood, vegetables, pork and soy are also on the menu. In Akira Kurosawa’s movie Seven Samurai, set in 16th century mainland Japan, peasants ate home-processed millet and barley, while the wealthy ate white rice. Although a movie may not be the best source of information, I assume it has some basis in fact.

White Rice: a Traditional Asian Staple?

It depends on your perspective. How far back do you have to go before you can call a food traditional? Many peoples' grandparents ate white rice, but I doubt their great great grandparents ate it frequently. White rice may have been a staple for the wealthy for hundreds of years in some places. But for most of Asia, in the last few thousand years, it was probably a rare treat. The diet most likely resembled that of many non-industrial Africans: an assortment of traditionally prepared grains, root vegetables, legumes, vegetables and a little meat.

Please add any additional information you may have about traditional Asian diets to the comments section.

Saturday, June 5, 2010

Fermented Grain Recipes from Around the World

In my last two posts on grains, I described how traditional food processing methods make grains more nutritious and digestible (1, 2). I promised to briefly describe a few recipes from around the world, then got distracted by other things. Here they are.

Africa: Ogi

Grain fermentation is widespread in Africa and is probably nearly as old as agriculture on the continent. The nutritional importance of fermentation is suggested by the amount of time and effort that many African cultures put into it, when they could save themselves a lot of trouble by simply soaking and cooking their grains.

Ogi is a common West African porridge that's eaten as a staple food by people of all ages. It's even used as a weaning food. It's made in essentially the same manner from corn, sorghum or millet.

Whole grain is soaked in water for one to three days. It's then wet milled, mixed with water and sieved to remove a portion of the bran. Extra bran is fed to animals, while the white, starchy sediment is fermented for two to three days. This is then cooked into a thin or thick porridge and eaten.

South America: Pozol

At first glance, some people may think I left the 'e' off the word 'pozole', a traditional Mexican stew. However, pozol is an entirely different beast, an ancient food almost totally unknown in the US, but which fueled the Mayan empire and remains a staple food in Southeastern Mexico.

To make pozol, first the corn must be 'nixtamalized': whole kernels are boiled in a large volume of water with calcium hydroxide (10% w/v). This is a processing step in most traditional South American corn recipes, as it allows a person to avoid pellagra (niacin deficiency)! The loosened bran is removed from the kernels by hand.

The kernels are then ground into dough, formed into balls and placed into banana leaves to ferment for one to 14 days. Following fermentation, pozol is diluted in water and consumed raw.

Europe: Sourdough Bread

Sourdough bread is Europe's quintessential fermented grain food. Before purified yeast strains came into widespread use in the 20th century, all bread would have been some form of sourdough.

Although in my opinion wheat is problematic for many people, sourdough fermentation renders it more nutritious and better tolerated by those with gluten/wheat sensitivity. In an interesting series of studies, Dr. Marco Gobbetti's group, among others, has shown that fermentation partially degrades gluten, explaining the ability of fermentation to decrease the adverse effects of gluten in those who are sensitive to it (3). They even showed that people with celiac disease can safely eat wheat bread that has been long-fermented with selected bacteria and yeasts under laboratory conditions (4). Rye contains about half the gluten of bread wheat, and is generally nutritionally superior to wheat, so sourdough rye is a better choice in my opinion.

To make sourdough bread, first the dry grains are ground into flour. Next, the flour is sifted through a screen to remove a portion of the bran. The earliest bread eaters probably didn't do this, although there is evidence of the wealthy eating sifted flour in societies as old as ancient Egypt and ancient Rome. I don't know what the optimum amount of bran to include in flour is, but it's not zero. I would be inclined to keep at least half of it, recognizing that the bran is disproportionately rich in nutrients.

Next, a portion of flour is mixed with water and a "sourdough starter", until it has a runny consistency. The starter is a diverse culture of bacteria and yeast that is carefully maintained by the bread maker. This culture acidifies the batter and produces carbon dioxide gas. The mixture is allowed to ferment for 8-12 hours. Finally, flour and salt are added to the batter and formed into dough balls. These are allowed to ferment and rise for a few hours, then baked.

My Experience

I've tried making ogi (millet) and pozol, and I have to admit that neither attempt was successful. Pozol in particular may depend on local populations of bacteria and yeast, as the grains' microorganisms are killed during processing. However, I do eat fermented grains regularly in the form of homemade brown rice 'uthappam' and sourdough buckwheat 'crepes'. The buckwheat crepes are tasty and easy to make. I'll post a recipe at some point.

The first two recipes are from the FAO publication Fermented Cereals: a Global Perspective (5).

Tuesday, May 25, 2010

Sweet Potatoes

We can measure the nutrient and toxin content of a food, and debate the health effects of each of its constituents until we're out of breath. But in the end, we still won't have a very accurate prediction of the health effects of that food. The question we need to answer is this one: has this food sustained healthy traditional cultures?

I'm currently reading a great book edited by Drs. Hugh Trowell and Denis Burkitt, titled Western Diseases: Their Emergence and Prevention. It's a compilation of chapters describing the diet and health of traditional populations around the world as they modernize.

The book contains a chapter on Papua New Guinea highlanders. Here's a description of their diet:
A diet survey was undertaken involving 90 subjects, in which all food consumed by each individual was weighed over a period of seven consecutive days. Sweet potato supplied over 90 percent of their total food intake, while non-tuberous vegetables accounted for less than 5 percent of the food consumed and the intake of meat was negligible... Extensive herds of pigs are maintained and, during exchange ceremonies, large amounts of pork are consumed.
They ate no salt. Their calories were almost entirely supplied by sweet potatoes, with occasional feasts on pork.

How was their health? Like many non-industrial societies, they had a high infant/child mortality rate, such that 43 percent of children died before growing old enough to marry. Surprisingly, protein deficiency was rare. No obvious malnutrition was observed in this population, although iodine-deficiency cretinism occurs in some highlands populations:
Young adults were well built and physically fit and had normal levels of haemoglobin and serum albumin. Further, adult females showed no evidence of malnutrition in spite of the demands by repeated cycles of pregnancy and lactation. On the basis of American standards (Society of Actuaries, 1959), both sexes were close to 100 percent standard weight in their twenties.
The Harvard Pack Test carried out on 152 consecutive subjects demonstrated a high level of physical fitness which was maintained well into middle-age. Use of a bicycle ergometer gave an estimated maximum oxygen uptake of 45.2 ml per kilogram per minute and thus confirmed the high level of cardiopulmonary fitness in this group.
Body weight decreased with age, which is typical of many non-industrial cultures and reflects declining muscle mass but continued leanness.

There was no evidence of coronary heart disease or diabetes. Average blood pressure was on the high side, but did not increase with age. Investigators administered 100 gram glucose tolerance tests and only 3.8 percent of the population had glucose readings above 160 mg/dL, compared to 21 percent of Americans. A study of 7,512 Papuans from several regions with minimal European contact indicated a diabetes prevalence of 0.1 percent, a strikingly low rate. For comparison, in 2007, 10.7 percent of American adults had diabetes (1).

I'm not claiming it's optimal to eat nothing but sweet potatoes. But this is the strongest evidence we're going to come by that sweet potatoes can be eaten in quantity as part of a healthy diet. However, I wish I knew more about the varieties this group ate. Sweet potatoes aren't necessarily sweet. Caribbean 'boniato' sweet potatoes are dry, starchy and off-white. In the US, I prefer the yellow sweet potatoes to the orange variety of sweet potato labeled 'yams', because the former are starchier and less sweet. If I could get my hands on locally grown boniatos here, I'd eat those, but boniatos are decidedly tropical.

Instead, I eat potatoes, but I'm reluctant to recommend them whole-heartedly because I don't know enough about the traditional cultures that consumed them. I believe there are some low-CHD, low-obesity African populations that eat potatoes as part of a starch-based diet, but I haven't looked into it closely enough to make any broad statements. Potatoes have some nutritional advantages over sweet potatoes (higher protein content, better amino acid profile), but also some disadvantages (lower fiber, lower in most micronutrients, toxic glycoalkaloids).

Tuesday, May 4, 2010

Traditional Preparation Methods Improve Grains' Nutritive Value

Soaking or Germinating Grains

The most basic method of preparing grains is prolonged soaking in water, followed by cooking. This combination reduces the level of water-soluble and heat-sensitive toxins and anti-nutrients such as tannins, saponins, digestive enzyme inhibitors and lectins, as well as flatulence factors. It also partially degrades phytic acid, which is a potent inhibitor of mineral absorption, an inhibitor of the digestive enzyme trypsin and an enemy of dental health (1). This improves the digestibility and nutritional value of grains as well as legumes.

I prefer to soak all grains and legumes for at least 12 hours in a warm location, preferably 24. This includes foods that most people don't soak, such as lentils. Soaking does not reduce phytic acid at all in grains that have been heat-treated, such as oats and kasha (technically not a grain), because they no longer contain the phytic acid-degrading enzyme phytase. Cooking without soaking first also does not have much effect on phytic acid.

The next level of grain preparation is germination. After soaking, rinse the grains twice per day for an additional day or two. This activates the grains' sprouting program and further increases their digestibility and vitamin content. When combined with cooking, it reduces phytic acid, although modestly. Therefore, most of the minerals in sprouted whole grains will continue to be inaccessible. Many raw sprouted grains and legumes are edible, but I wouldn't use them as a staple food because they retain most of their phytic acid as well as some heat-sensitive anti-nutrients (2).

Grinding and Fermenting Grains

Many cultures around the world have independently discovered fermentation as a way to greatly improve the digestibility and nutritive value of grains (3). Typically, grains are soaked, ground, and allowed to sour ferment for times ranging from 12 hours to several days. In some cases, a portion of the bran is removed before or after grinding.

In addition to the reduction in toxins and anti-nutrients afforded by soaking and cooking, grinding and fermentation goes much further. Grinding greatly increases the surface area of the grains and breaks up their cellular structure, releasing enzymes which are important for the transformation to come. Under the right conditions, which are easy to achieve, lactic acid bacteria rapidly acidify the batter. These bacteria are naturally present on grains, but adding a starter makes the process more efficient and reliable.

Due to some quirk of nature, grain phytase is maximally active at a pH of between 4.5 and 5.5, which is mildly acidic. This is why the Weston Price foundation recommends soaking grains in an acidic medium before cooking. The combination of grinding and sour fermentation causes grains to efficiently degrade their own phytic acid (as long as they haven't been heat treated first), making minerals much more available for absorption (4, 5, 6, 7). This transforms whole grains from a poor source of minerals into a good source.

The degree of phytic acid degradation depends on the starting amount of phytase in the grain. Corn, rice, oats and millet don't contain much phytase activity, so they require either a longer fermentation time, or the addition of high-phytase grains to the batter (8). Whole raw buckwheat, wheat, and particularly rye contain a large amount of phytase (9), although I feel wheat is problematic for other reasons.

As fermentation proceeds, bacteria secrete enzymes that begin digesting the protein, starch and other substances in the batter. Fermentation reduces lectin levels substantially, which are reduced further by cooking (10). Lectins are toxins that can interfere with digestion and may be involved in autoimmune disease, an idea championed by Dr. Loren Cordain. Grain lectins are generally heat-sensitive, but one notable exception is the nasty lectin wheat germ agglutinin (WGA). As its name suggests, WGA is found in wheat germ, and thus is mostly absent in white flour. WGA may have been another reason why DART participants who increased their wheat fiber intake had significantly more heart attacks than those who didn't. I don't know if fermentation degrades WGA.

One of the problems with grains is their poor protein quality. Besides containing a fairly low concentration of protein to begin with, they also don't contain a good balance of essential amino acids. This prevents their efficient use by the body, unless a separate source of certain amino acids is eaten along with them. The main limiting amino acid in grains is lysine. Legumes are rich in lysine, which is why cultures around the world pair them with grains. Bacterial fermentation produces lysine, often increasing its concentration by many fold and making grains nearly a "complete protein", i.e. one that contains the ideal balance of essential amino acids as do animal proteins (11, scroll down to see graph). Not very many plant foods can make that claim. Fermentation also increases the concentration of the amino acid methionine and certain vitamins.

Another problem with grain protein is it's poorly digested relative to animal protein. This means that a portion of it escapes digestion, leading to a lower nutritive value and a higher risk of allergy due to undigested protein hanging around in the digestive tract. Fermentation followed by cooking increases the digestibility of grain protein, bringing it nearly to the same level as meat (12, 13, 14, 15). This may relate to the destruction of protease inhibitors (trypsin inhibitors, phytic acid) and the partial pre-digestion of grain proteins by bacteria.

Once you delve into the research on traditional grain preparation methods, you begin to see why grain-eating cultures throughout the world have favored certain techniques. Proper grain processing transforms them from toxic to nutritious, from health-degrading to health-giving. Modern industrial grain processing has largely eschewed these time-honored techniques, replacing them with low-extraction milling, extrusion and quick-rise yeast strains.

Many people will not be willing to go through the trouble of grinding and fermentation to prepare grains. I can sympathize, although if you have the right tools, once you establish a routine it really isn't that much work. It just requires a bit of organization. In fact, it can even be downright convenient. I often keep a bowl of fermented dosa or buckwheat batter in the fridge, ready to make a tasty "pancake" at a moment's notice. In the next post, I'll describe a few recipes from different parts of the world.

Further reading:

How to Eat Grains
A Few Thoughts on Minerals, Milling, Grains and Tubers
Dietary Fiber and Mineral Availability
A New Way to Soak Brown Rice